

 Navigation

 	
 index

 	
 next |

 	ecopy 0.0.8 documentation

EcoPy - Ecological Data Analysis in Python

EcoPy contains numerous numerical and statistical techniques for working with and analyzing multivariate data. Although designed with ecologists in mind, many of the functions and features are widely applicable. In general, it focuses on multivariate data analysis, which can be useful in any field, but with particular attention to those methods widely used in ecology. This website contains documentation and examples for all functions.

Version

Current Version - 0.0.8

Installing EcoPy

pip install ecopy

Documentation

	Species Diversity

	Matrix Transformations

	Ordination

	Matrix Comparisons

	References

	License

	Contact

	Version History

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

Species Diversity

EcoPy contains several methods for estimating species diversity:

	diversity()

	rarefy()

	
diversity(x, method='shannon', breakNA=True)

	Calculate species diversity for every site in a site x species matrix

Parameters

	x: numpy.ndarray or pandas.DataFrame (required)

	A site x species matrix, where sites are rows and columns are species.

	method: [‘shannon’ | ‘simpson’ | ‘invSimpson’ | ‘dominance’ | ‘spRich’ | ‘even’]

	shannon: Calculates Shannon’s H

[image: H = -\sum_1^k p_k \log p_k]

where [image: p_k] is the relative abundance of species k

simpson: Calculates Simpson’s D

[image: D = 1 - \sum_1^k p_k^2]

invSimpson: Inverse of Simpson’s D

dominance: Dominance index. [image: \max p_k]

spRich: Species richness (# of non-zero columns)

even: Evenness of a site. Shannon’s H divided by log of species richness.

	breakNA: [True | False]

	Whether null values should halt the process. If False, then null values are removed from all calculations.

Example

Calculate Shannon diversity of the ‘varespec’ dataset from R:

import ecopy as ep
varespec = ep.load_data('varespec')
shannonH = ep.diversity(varespec, 'shannon')

	
rarefy(x, method='rarefy', size=None, breakNA=True)

	Returns either rarefied species richness or draws a rarefaction curve for each row. Rarefied species richness is calculated based on the smallest sample (default) or allows user-specified sample sizes.

Parameters

	x: numpy.ndarray or pandas.DataFrame (required)

	A site x species matrix, where sites are rows and columns are species.

	method: [‘rarefy’ | ‘rarecurve’]

	rarefy: Returns rarefied species richness.

[image: S = \sum_1^i 1 - \frac{\binom{N-N_i}{size}}{\binom{N}{size}}]

where N is the total number of individuals in the site, [image: N_i] is the number of individuals of species i, and size is the sample size for rarefaction

rarecurve: Plots a rarefaction curve for each site (row). The curve is calculated as

[image: S_n - \frac{\sum_1^i \binom{N-N_i}{size}}{\binom{N}{size}}]

where [image: S_n] is the total number of species in the matrix and size ranges from 0 to the total number of individuals in each site.

Example

Calculate rarefied species richness for the BCI dataset:

import ecopy as ep
varespec = ep.load_data('BCI')
rareRich = ep.rarefy(varespec, 'rarefy')

Show rarefaction curves for each site:

ep.rarefy(varespec, 'rarecurve')

[image: _images/rarecurve.png]

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

Matrix Transformations

EcoPy makes it easy to prep matrices for analysis. It assumes that all matrices have observations as rows (i.e. sites) and descriptors as columns (i.e. species). Although designed for site x species analyses, these techniques can apply to any matrix.

	transform()

	distance()

	
transform(x, method='wisconsin', axis=1, breakNA=True)

	Takes an input matrix, performs a transformation, and returns an output matrix. It will accept either a pandas.DataFrame or numpy.ndarray, and will return an object of the same class. Matrices consist of i rows and k columns.

Parameters

	x: a numpy.ndarray or pandas.DataFrame (required)

	A site x species matrix, where sites are rows and columns are species.

	method: [‘total’ | ‘max’ | ‘normalize’, ‘range’, ‘standardize’, ‘hellinger’, ‘log’, ‘logp1’, ‘pa’, ‘wisconsin’]

	total: Divides each observation by row or column sum.

max: Divides each observation by row or column max.

normalize: Chord transformation, also euclidean normalization, making the length of each row or column 1.

[image: y_{ik} = \frac{y_{ik}} { \sqrt{ \sum_1^k y_{ik}^2 } }]

range: Converts the range of the data to 0 and 1.

standardize: Standardizes each observation (i.e. z-score).

hellinger: Square-root of the total transformation.

log: Returns ln(x+1)

logp1: Returns ln(x) + 1, if x > 0. Otherwise returns 0.

pa: Converts data to binary absence (0) presence (1) data.

wisconsin: First divides an observation by the max of the column, then the sum of the row. That is, it applies ‘max’ down columns then ‘total’ across rows.

	axis: [0 | 1]

	Axis for the transformation.

	breakNA: [True | False]

	Whether NA values should halt the transformation.

Example

Convert the ‘varespec’ data to relative abundance:

import ecopy as ep
varespec = ep.load_data('varespec')
relAbund = ep.transform(varespec, method='total', axis=1)

	
distance(x, method='euclidean', transform="1", breakNA=True)

	Takes an input matrix and returns a square-symmetric array of distances among rows. NOTE: Be sure the appropriate transformation has already been applied. This function contains a variety of both similarity (S) and distance (D) metrics. However, for consistency all similarities are converted to distances D = 1 - S. Methods annotated with SIMILARITY follow this procedure.

In the case of binary 0/1 data, the two rows are converted to a contingency table, where A is the number of double presences, B and C are the number of single presences in [image: x_1] and [image: x_2], respectively, and D is the number of double absences. Matrices consist of i rows and k species. Methods that only work on binary data will result in an error if non-binary data is passed. However, binary data can be passed to all methods, and sometimes give equivalent results (i.e. passing binary data to method ‘bray’ is identical to using method ‘sorensen’).

Parameters

	x: a numpy.ndarray or pandas.DataFrame (required)

	A site x species matrix, where sites are rows and columns are species.

	method: [‘euclidean’ | ‘chord’ | ‘manhattan’ | ‘meanChar’ | ‘whittaker’ | ‘canberra’ | ‘hellinger’ | ‘mod_gower’ | ‘bray’ | ‘kulcznski’ | ‘gower’ | ‘simple’ | ‘rogers’ | ‘sokal’ | ‘jaccard’ | ‘sorensen’]

	Note, some methods do not allow negative values.

euclidean: Calculates euclidean distance between rows.

chord: Euclidean distance of normalized rows.

manhattan: ‘City-block’ distance

[image: D_{1,2} = \sum_1^k |x_{1k} - x_{2k}|]

meanChar: Czekanowski’s mean character difference, where M is the number of columns.

[image: D_{1,2} = \frac{1}{M} \sum_1^k |x_{1k} - x_{2k}|]

whittaker: Whittaker’s index of association. Rows are first standardized by row totals (if the transformation as already been applied above, this will not affect it as row totals will equal 1)

[image: D_{1,2} = 0.5 \sum_1^k |x_{1k} - x_{2k}|]

canberra: Canberra metric

[image: \frac{1}{M} \sum_1^k \frac{x_{1k} - x_{2k}}{x_{1k} + x_{2k}}]

hellinger: Hellinger distance. This is the same as ‘chord’, but square-root transformed first.

mod_gower: Modified Gower distance. This is the same as ‘meanChar’, except M is the number of columns that are not double zero. This discounts double-absences from the ‘meanChar’ method.

bray: Bray-Curtis percentage dissimilarity coefficient

[image: D_{1,2} = 1 - \frac{ 2*\sum_1^k \min (x_{1k}, x_{2k}) }{ \sum x_1 + \sum x_2 }]

kulcznski: Kulcznski’s coefficient (SIMILARITY)

[image: S_{1,2} = 0.5 (\frac{\sum_1^k \min (x_{1k}, x_{2k})}{\sum x_1} + \frac{\sum_1^k \min (x_{1k}, x_{2k})}{\sum x_2})]

gower: Gower asymmetrical coefficient (SIMILARITY)

[image: S_{1,2} = \frac{1}{M} (1 - \sum_1^k \frac{ |x_{1k} - x_{2k}| }{\max x_k - \min x_k})]

The denominator is the maximum of column k minus the minimum of column k in the entire matrix. Double zeroes are excluded in this calculation.

simple: simple matching of BINARY data (SIMILARITY)

[image: S_{1,2} = \frac{A+D}{A+B+C+D}]

rogers: Rogers and Tanimoto coefficient for BINARY data (SIMILARITY)

[image: S_{1,2} = \frac{A+D}{A +2B + 2C + D}]

sokal: Sokal and Sneath coefficient for BINARY data (SIMILARITY)

[image: S_{1,2} = \frac{2A + 2D}{2A + B + C + 2D}]

jaccard: Jaccard’s coefficient for BINARY data (SIMILARITY)

[image: S_{1,2} = \frac{A}{A+B+C}]

sorensen: Sorensen’s coefficient for BINARY data (SIMILARITY)

[image: S_{1,2} = \frac{2A}{2A + B + C}]

	transform: [“1” | “sqrt”]

	Determines the final transformation of the distance metric. “1” returns the raw distance D. “sqrt” returns sqrt(D). Sometimes sqrt(D) has more desirable properties, depending on the subsequent analyses (see Legendre and Legendre - Numerical Ecology).

	breakNA: [True | False]

	Whether null values should halt the process.

Examples

Calculate the Bray-Curtis dissimilarity among rows of the ‘varespec’ data:

import ecopy as ep
varespec = ep.load_data('varespec')
brayDist = ep.distance(varespec, method='bray)

If attempting a binary method with non-binary data, an error will be raise:

jacDist = ep.transform(varespec, method='jaccard')

>>ValueError: For method jaccard, data must be binary

varespec2 = ep.transform(varespec, method='pa')
jacDist = distance(varespec2, method='jaccard')

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

Ordination

Ecopy contains numerous methods for ordination, that is, plotting points in reduced space. Techniques include, but are not limited to, principle components analysis (PCA), correspondence analysis (CA), principle coordinates analysis (PCoA), and multidimensional scaling (nMDS).

	pca (Principle Components Analysis)

	ca (Correspondance Analysis)

	pcoa (Principle Coordinates Analysis)

	MDS (Multidimensional Scaling)

	hillsmith (Hill and Smith Ordination)

	
class pca(x, scale=True, varNames=None)

	Takes an input matrix and performs principle components analysis. It will accept either pandas.DataFrames or numpy.ndarrays. It returns on object of class ‘pca’, with several methods and attributes. This function uses SVD and can operate when rows < columns. NOTE: PCA will NOT work with missing observations, as it is up to the user to decide how best to deal with those. Returns object of class pca.

Parameters

	x: a numpy.ndarray or pandas.DataFrame

	A matrix for ordination, where objects are rows and descriptors/variables as columns. Can be either a pandas.DataFrame or numpy. ndarray.

	scale: [True | False]

	Whether or not the columns should be standardized prior to PCA. If ‘True’, the PCA then operates on a correlation matrix, which is appropriate if variables are on different measurement scales. If variables are on the same scale, use ‘False’ to have PCA operate on the covariance matrix.

	varNames: list

	If using a numpy.ndarray, pass a list of column names for to help make PCA output easier to interpret. Column names should be in order of the columns in the matrix. Otherwise, column names are represented as integers during summary.

Attributes

	
evals

	Eigenvalues in order of largest to smallest.

	
evecs

	Normalized eigenvectors corresponding to each eigenvalue (i.e. the principle axes).

	
scores

	Principle component scores of each object (row) on each principle axis. This returns the raw scores [image: \mathbf{F}] calculated as [image: \mathbf{F} = \mathbf{YU}] where [image: \mathbf{U}] is the matrix of eigenvectors and [image: \mathbf{Y}] are the original observations.

Methods

	
classmethod summary_imp()

	Returns a data frame containing information about the principle axes.

	
classmethod summary_rot()

	Returns a data frame containing information on axes rotations (i.e. the eigenvectors).

	
classmethod summary_desc()

	Returns a data frame containing the cumulative variance explained for each predictor along each principle axis.

	
classmethod biplot(xax=1, yax=2, type='distance', obsNames=False)

	Create a biplot using a specified transformation.

	xax: integer

	Specifies which PC axis to plot on the x-axis

	yax: integer

	Specifies which PC axis to plot on the y-axis

	type: [‘distance’ | ‘correlation’]

	Type ‘distance’ plots the raw scores [image: \mathbf{F}] and the raw vectors [image: \mathbf{U}] of the first two principle axes.

Type ‘correlation’ plots scores and vectors scaled by the eigenvalues corresponding to each axis: [image: \mathbf{F\Lambda}^{-0.5}] and [image: \mathbf{U\Lambda}^{0.5}], where [image: \mathbf{\Lambda}] is a diagonal matrix containing the eigenvalues.

	obsNames: [True | False]

	Denotes whether to plot a scatterplot of points (False) or to actually show the names of the observations, as taken from the DataFrame index (True).

Examples

Principle components analysis of the USArrests data. First, load the data:

import ecopy as ep
USArrests = ep.load_data('USArrests')

Next, run the PCA:

arrests_PCA = ep.pca(USArrests, scale=True)

Check the importance of the different axes by examining the standard deviations, which are the square root of the eigenvalues, and the proportions of variance explained by each axis:

impPC = arrests_PCA.summary_imp()
print impPC
 PC1 PC2 PC3 PC4
Std Dev 1.574878 0.994869 0.597129 0.416449
Proportion 0.620060 0.247441 0.089141 0.043358
Cum Prop 0.620060 0.867502 0.956642 1.000000

Next, examine the eigenvectors and loadings to determine which variables contribute to which axes:

rotPC = arrests_PCA.summary_rot()
print rotPC
 PC1 PC2 PC3 PC4
Murder 0.535899 0.418181 -0.341233 0.649228
Assault 0.583184 0.187986 -0.268148 -0.743407
UrbanPop 0.278191 -0.872806 -0.378016 0.133878
Rape 0.543432 -0.167319 0.817778 0.089024

Then, look to see how much of the variance among predictors is explained by the first two axes:

print arrests_PCA.summary_desc()
 PC1 PC2 PC3 PC4
Murder 0.712296 0.885382 0.926900 1
Assault 0.843538 0.878515 0.904153 1
Urban Pop 0.191946 0.945940 0.996892 1
Rape 0.732461 0.760170 0.998626 1

Show the biplot using the ‘correlation’ scaling. Instead of just a scatterplot, use obsNames=True to show the actual names of observations:

arrests_PCA.biplot(type='correlation', obsNames=True)

[image: _images/corrpca.png]

	
class ca(x, siteNames=None, spNames=None, scaling=1)

	Takes an input matrix and performs principle simple correspondence analysis. It will accept either pandas.DataFrames or numpy.ndarrays. Data MUST be 0’s or positive numbers. NOTE: Will NOT work with missing observations, as it is up to the user to decide how best to deal with those. Returns on object of class ca.

Parameters

	x: a numpy.ndarray or pandas.DataFrame

	A matrix for ordination, where objects are rows and descriptors/variables as columns. Can be either a pandas.DataFrame or numpy.ndarray. NOTE: If the matrix has more variables (columns) than objects (rows), the matrix will be transposed prior to analysis, which reverses the meanings of the matrices as noted.

The matrix is first scaled to proportions by dividing each element by the matrix sum, [image: p_{ik} = y_{ik} / \sum_1^i \sum_1^k]. Row (site) weights [image: w_i] are calculated as the sums of row probabilities and column (species) weights [image: w_k] are the sum of column probabilities. NOTE: If [image: r < c] in the original matrix, then row weights give species weights and column weights give site weights due to transposition.

A matrix of chi-squared deviations is then calculated as:

[image: \mathbf{Q} = \frac{p_{ik} - w_i w_k}{\sqrt{w_i w_k}}]

This is then converted into a sum-of-squared deviations as

[image: \mathbf{QQ} = \mathbf{Q'Q}]

Eigen-decomposition of [image: \mathbf{QQ}] yields a diagonal matrix of eigenvalues [image: \mathbf{\Lambda}] and a matrix of eigenvectors [image: \mathbf{U}]. Left-hand eigenvectors [image: \mathbf{\hat{U}}] (as determined by SVD) are calculated as [image: \mathbf{\hat{U}} = \mathbf{QU\Lambda}^{-0.5}]. [image: \mathbf{U}] gives the column (species) loadings and [image: \mathbf{\hat{U}}] gives the row (site) loadings. NOTE: If [image: r < c] in the original matrix, the roles of these matrices are reversed.

	siteNames: list

	A list of site names. If left blank, site names are taken as the index of the pandas.DataFrame or the row index from the numpy.ndarray.

	spNames: list

	A list of species names. If left blank, species names are taken as the column names of the pandas.DataFrame or the column index from the numpy.ndarray.

	scaling: [1 | 2]

	Which type of scaling to use when calculating site and species scores. 1 produces a site biplot, 2 produces a species biplot. In biplots, only the first two axes are shown. The plots are constructed as follows:

Four matrices are constructed. Outer species (column) locations on CA axes [image: \mathbf{V}] are given by the species (column) weights multiplied by the species (column) eigenvalues:

[image: \mathbf{V} = \mathbf{D_k}^{-0.5}\mathbf{U}]

where [image: \mathbf{D_k}] is a diagonal matrix of species (column) weights w_k. Likewise, outer site (row) locations are given by:

[image: \mathbf{\hat{V}} = \mathbf{D_i}^{-0.5}\mathbf{\hat{U}}]

Inner site locations [image: \mathbf{F}] are given as:

[image: \mathbf{F} = \mathbf{\hat{V}}\mathbf{\Lambda^{0.5}}]

Inner species locations are given as:

[image: \mathbf{\hat{F}} = \mathbf{V}\mathbf{\Lambda^{0.5}}]

Scaling 1 Biplot: Scaling 1 shows the relationships among sites within the centroids of the species. This plot is useful for examining relationships among sites and how sites are composed of species. In this, the first two columns of inner site locations [image: \mathbf{F}] are plotted against the first two columns of the outer species locations [image: \mathbf{V}]. NOTE: If [image: r < c] in the original matrix, this will be [image: \mathbf{\hat{F}}] and [image: \mathbf{\hat{V}}].

Scaling 2 Biplot: Scaling 2 shows the relationships among species within the centroids of the sites. This plot is useful for examining relationships among species and how species are distributed among sites. In this, the first two columns of inner species locations [image: \mathbf{\hat{F}}] are plotted against the first two columns of the outer site locations [image: \mathbf{\hat{V}}]. NOTE: If [image: r < c] in the original matrix, this will be [image: \mathbf{F}] and [image: \mathbf{V}].

Attributes

	
w_col

	Column weights in the proportion matrix. Normally species weights unless [image: r<c], in which case they are site weights.

	
w_row

	Row weights in the proportion matrix. Normally site weights unless [image: r<c], in which case they are species weights.

	
U

	Column (species) eigenvectors (see above note on transposition).

	
Uhat

	Row (site) eigenvectors (see above note on transposition).

	
cumDesc_Sp

	pandas.DataFrame of the cumulative contribution of each eigenvector to each species. Matrix [image: \mathbf{U}] is scaled by eigenvalues [image: \mathbf{U_2} = \mathbf{U\Lambda}^{0.5}]. Then, the cumulative sum of each column is divided by the column total for every row. If [image: r < c] in the original data, then this operation is performed on [image: \mathbf{\hat{U}}] automatically.

	
cumDesc_Site

	The same for cumDesc_Sp, but for each site. Normally calculated for [image: \mathbf{\hat{U}}] unless [image: r < c], then calculated on [image: \mathbf{U}].

	
siteScores

	Site scores along each CA axis. All considerations for matrix transposition and scaling have been taken into account.

	
spScores

	Species scores along each CA axis. All considerations for matrix transposition and scaling have been taken into account.

Methods

	
classmethod summary()

	Returns a pandas.DataFrame of summary information for each correspondence axis, including SD’s (square-root of each eigenvalue), proportion of inertia explained, and cumulative inertia explained.

	
classmethod biplot(coords=False, type=1, xax=1, yax=2, showSp=True, showSite=True, spCol='r', siteCol='k', spSize=12, siteSize=12, xlim=None, ylim=None)

	Produces a biplot of the given CA axes.

	xax: integer

	Specifies CA axis to plot on the x-axis.

	yax: integer

	Specifies CA axis to plot on the y-axis.

	showSp: [True | False]

	Whether or not to show species in the plot.

	showSite: [True | False]

	Whether or not to show sites in the plot.

	spCol: string

	Color of species text.

	siteCol: string

	Color of site text.

	spSize: integer

	Size of species text.

	siteSize: integer

	Size of site text.

	xlim: list

	A list of x-axis limits to override default.

	ylim: list

	A list of y-axis limits to override default.

Examples

In Legendre and Legendre (2012), there is an example of three species varying among three lakes. Write in that data:

import ecopy as ep
import numpy as np
Lakes = np.array([[10, 10, 20], [10, 15, 10], [15, 5, 5]])
Lakes = pd.DataFrame(Lakes, index = ['L1', 'L2', 'L3'])
Lakes.columns = ['Sp1', 'Sp2', 'Sp3']

Next, run the CA:

lakes_CA = ep.ca(Lakes)

Check the variance explained by each CA axis (there will only be two):

CA_summary = lakes_CA.summary()
print CA_summary
 CA Axis 1 CA Axis 2
Std. Dev 0.310053 0.202341
Prop. 0.701318 0.298682
Cum. Prop. 0.701318 1.000000

Next, see how well the two axes explained variance in species and sites:

rotPC = arrests_PCA.summary_rot()
print rotPC
 PC1 PC2 PC3 PC4
Murder 0.535899 0.418181 -0.341233 0.649228
Assault 0.583184 0.187986 -0.268148 -0.743407
UrbanPop 0.278191 -0.872806 -0.378016 0.133878
Rape 0.543432 -0.167319 0.817778 0.089024

Although the loadings are informative, showing the correlations of each variable with each axis might ease interpretation:

print lakes_CA.cumDesc_Sp
 CA Axis 1 CA Axis 2
Sp1 0.971877 1
Sp2 0.129043 1
Sp3 0.732340 1

print lakes_CA.cumDesc_site
 CA Axis 1 CA Axis 2
L1 0.684705 1
L2 0.059355 1
L3 0.967209 1

Make a Type 1 biplot to look at the relationship among sites:

lakes_CA.biplot()

[image: _images/ca_1.png]

In a bigger example, run CA on the BCI dataset. NOTE: This is an example where [image: r < c]:

BCI = ep.load_data('BCI')
bci_ca = ep.ca(BCI)
bci_ca.biplot(showSp=False)

[image: _images/ca3.png]

	
class pcoa(x, correction=None, siteNames=None)

	Takes a square-symmetric distance matrix with no negative values as input. NOTE: This will not work with missing observations. Returns an object of class pcoa.

Parameters

	x: a numpy.ndarray or pandas.DataFrame

	A square, symmetric distance matrix with no negative values and no missing observations. Diagonal entries should be 0.

For PCoA, distance matrix [image: \mathbf{x}] is first corrected to a new matrix [image: \mathbf{A}], where [image: a_{ij} = -0.5*x_{ij}^2]. Elements of the new matrix [image: \mathbf{A}] are centered by row and column means using the equation [image: \mathbf{\Delta_1} = \mathbf{(I - \frac{1'1}{n})A(I - \frac{1'1}{n})}]. PCoA is eigenanalysis of [image: \mathbf{\Delta_1}]. Eigenvectors [image: \mathbf{U}] are scaled by the square root of each eigenvalue [image: \mathbf{U_{scl}} = \mathbf{U}\mathbf{\Lambda^{0.5}}] where [image: \mathbf{\Lambda}] is a diagonal matrix of the eigenvalues.

	correction: [None | 1 | 2]

	Which correction should be applied for negative eigenvalues. Accepts either ‘1’ or ‘2’ (must be a string). By default, no correction is applied.

Correction 1: Computes PCoA as described above. Adds the absolute value of the largest negative eigenvalue to the square original distance matrix (while keeping diagonals as 0) and then re-runs PCoA from the beginning.

Correction 2: Constructs a special matrix

[image: \begin{bmatrix} \mathbf{0} & 2\mathbf{\Delta_1} \\ -\mathbf{I} & -4\mathbf{\Delta_2} \end{bmatrix}]

[image: \Delta_1] is the centered, corrected distance matrix as described above and [image: \Delta_2] is a centered matrix (uncorrected) of [image: -0.5\mathbf{x}]. The largest, positive eigenvalue of this matrix is then added the original distances and PCoA run from the beginning.

	siteNames: list

	A list of site names. If not passed, inherits from the DataFrame index or assigns integer values.

Attributes

	
evals

	Eigenvalues of each principle coordinate axis.

	
U

	Eignevectors describing each axis. These have already been scaled.

	
correction

	The correction factor applied to correct for negative eignvalues.

Methods

	
classmethod summary()

	Returns a pandas.DataFrame summarizing the variance explained by each principle coordinate axis.

	
classmethod biplot(coords=False, xax=1, yax=2, descriptors=None, descripNames=None, spCol='r', siteCol='k', spSize=12, siteSize=12)

	Produces a biplot of the given PCoA axes.

	coords: [True | False]

	If True, returns a dictionary of the plotted axes, where ‘Objects’ gives the coordinates of objects and ‘Descriptors’ gives the coordinates of the descriptors, if any.

	xax: integer

	Specifies PCoA axis to plot on the x-axis.

	yax: integer

	Specifies PCoA axis to plot on the y-axis.

	descriptors: numpy.ndarray or pandas.DataFrame

	An n x m matrix of descriptors to plot on the biplot. These can be the original descriptors used to calculate distances among objects or an entirely new set. Descriptors must be quantitative. It will work for binary descriptors, but may be meaningless.

Given a new matrix [image: \mathbf{Y}] of descriptors, the matrix is standardized by columns to produce a new matrix [image: \mathbf{Y_{scl}}]. The given principle coordinate axes denoted by xax and yax are placed into an n x 2 matrix [image: \mathbf{V}], which is also standardized by column. The covariance between the new descriptors and principle coordinates is given by

[image: \mathbf{S} = \frac{1}{n-1}\mathbf{Y'_{scl}V}]

The covariance [image: \mathbf{S}] is then scaled by the eigenvalues corresponding to the given eigenvectors:

[image: \mathbf{Y_{proj}} = \sqrt{n-1}\mathbf{S\Lambda^{-0.5}}]

Matrix [image: \mathbf{Y_{proj}}] contains the coordinates of each descriptor and is what is returned as ‘Descriptors’ if coords=True.

	descripNames: list

	A list containing the names of each descriptor. If None, inherits from the column names of the pandas.DataFrame or assigned integer values.

	spCol: string

	Color of species text.

	siteCol: string

	Color of site text.

	spSize: integer

	Size of species text.

	siteSize: integer

	Size of site text.

	
classmethod shepard(xax=1, yax=2)

	Plots a Shepard diagram of Euclidean distances among objects in reduced space vs. original distance calculations. xax and yax as above.

Examples

Run PCoA on the ‘BCI’ data:

import ecopy as ep

BCI = ep.load_data('BCI')
brayD = ep.distance(BCI, method='bray', transform='sqrt')
pc1 = ep.pcoa(brayD)
print pc1.summary()[['PCoA Axis 1', 'PCoA Axis 2']]

 PCoA Axis 1 PCoA Axis 2
Std. Dev 1.094943 0.962549
Prop. 0.107487 0.083065
Cum. Prop. 0.107487 0.190552

pc1.biplot()

[image: _images/pcoa1.png]

Attempting to show species on the above biplot results in a messy graph. To better illustrate its use, run PCoA on the USArrests data:

USA = ep.load_data('USArrests')
standardize columns first
USA = USA.apply(lambda x: (x - x.mean())/x.std(), axis=0)
eucD = ep.distance(USA, 'euclidean')

pc2 = ep.pcoa(eucD, siteNames=USA.index.values)
pc2.biplot(descriptors=USA)

[image: _images/pcoa_arrests.png]

	
class MDS(distmat, siteNames=None, naxes=2, transform='monotone', ntry=20, tolerance=1E-4, maxiter=3000, init=None)

	Takes a square-symmetric distance matrix with no negative values as input. After finding the solution that provide the lowest stress, ecopy.MDS scales the fitted distances to have a maximum equal to the maximum observed distance. Afterwards, it uses PCA to rotate the object (site) scores so that variance is maximized along the x-axis. Returns an object of class MDS.

Parameters

	distmat: np.ndarray or pandas.DataFrame

	A square-symmetric distance matrix.

	siteNames: list

	A list of names for each object. If none, takes on integer values or the index of the pandas.DataFrame.

	naxes: integer

	Number of ordination axes.

	transform: [‘absolute’ | ‘ratio’ | ‘linear’ | ‘monotone’]

	Which transformation should be used during scaling.

absolute: Conducts absolute MDS. Distances between points in ordination space should be as close as possible to observed distances.

ratio: Ordination distances are proportional to observed distances.

linear: Ordination distances are a linear function of observed distances. Uses the technique of Heiser (1991) to avoid negative ordination distances.

monotone: Constrains ordination distances simply to be ranked the same as observed distance. Typically referred to as non-metric multidimensional scaling. Uses isotonic regression developed by Nelle Varoquaux and Andrew Tulloch from scikit-learn.

	ntry: integer

	Number of random starts used to avoid local minima. The returned solution is the one with the lowest final stress.

	tolerance: float

	Minimum step size causing a break in the minimization of stress. Default = 1E-4.

	maxiter: integer

	Maximum number of iterations to attempt before breaking if no solution is found.

	init: numpy.ndarray

	Initial positions for the first random start. If none, the initial position of the first try is taken as the site locations from classical scaling, Principle Coordinates Analysis.

Attributes

	
scores

	Final scores for each object along the ordination axes.

	
stress

	Final stress.

	
obs

	The observed distance matrix.

	
transform

	Which transformation was used.

Methods

	
classmethod biplot(coords=False, xax=1, yax=2, siteNames=True, descriptors=None, descripNames=None, spCol='r', siteCol='k', spSize=12, siteSize=12)

	Produces a biplot of the given MDS axes.

	coords: [True | False]

	If True, returns a dictionary of the plotted axes, where ‘Objects’ gives the coordinates of objects and ‘Descriptors’ gives the coordinates of the descriptors, if any.

	xax: integer

	Specifies MDS axis to plot on the x-axis.

	yax: integer

	Specifies MDS axis to plot on the y-axis.

	descriptors: numpy.ndarray or pandas.DataFrame

	A matrix of the original descriptors used to create the distance matrix. Descriptors (i.e. species) scores are calculated as the weighted average of site scores.

	descripNames: list

	A list containing the names of each descriptor. If None, inherits from the column names of the pandas.DataFrame or assigned integer values.

	spCol: string

	Color of species text.

	siteCol: string

	Color of site text.

	spSize: integer

	Size of species text.

	siteSize: integer

	Size of site text.

	
classmethod shepard(xax=1, yax=2)

	Plots a Shepard diagram of Euclidean distances among objects in reduced space vs. original distance calculations. xax and yax as above.

	
classmethod correlations()

	Returns a pandas.Series of correlations between observed and fitted distances for each site.

	
classmethod correlationPlots(site=None)

	Produces a plot of observed vs. fitted distances for a given site. If site=None, then all sites are plotted on a single graph.

Examples

Conduct nMDS on the ‘dune’ data:

import ecopy as ep
dunes = ep.load_data('dune')
dunes_T = ep.transform(dunes, 'wisconsin')
dunes_D = ep.distance(dunes_T, 'bray')
dunesMDS = ep.MDS(dunes_D, transform='monotone')

Plot the Shepard diagram:

dunesMDS.shepard()

[image: _images/duneshepard.png]

Check the correlations for observed vs. fitted distances:

dunesMDS.correlationPlots()

[image: _images/dunecorrs.png]

Make a biplot, showing species locations:

dunesMDS.biplot(descriptors=dunes_T)

[image: _images/dunesbiplot.png]

	
class hillsmith(mat, wt_r=None, ndim=2)

	Takes an input matrix and performs ordination described by Hill and Smith (1976). Returns an object of class hillsmith, with several methods and attributes. NOTE: This will NOT work when rows < columns or with missing values.

Parameters

	mat: pandas.DataFrame

	A matrix for ordination, where objects are rows and descriptors/variables as columns. Can have mixed data types (both quantitative and qualitative). If all columns are quantitative, this method is equivalent to PCA. If all columns are qualitative, this method is equivalent to MCA. Should not be used with ordered factors. In order to account for factors, this method creates dummy variables for each factor and then assigns weights to each dummy column based on the number of observations in each column.

	wt_r: list or numpy.ndarray

	Optional vector of row weights.

	ndim: int

	Number of axes and components to save.

Attributes

	
evals

	Eigenvalues in order of largest to smallest.

	
pr_axes

	The principle axes of each column.

	
row_coords

	Row coordinates along each principle axis.

	
pr_components

	The principle components of each row.

	
column_coords

	Column coordinates along each principle component.

Methods

	
classmethod summary()

	Returns a data frame containing information about the principle axes.

	
classmethod biplot(invert=False, xax=1, yax=2, obsNames=True)

	Create a biplot using a specified transformation.

	invert: [True|Fasle]

	If False (default), plots the row coordinates as points and the principle axes of each column as arrows. If True, plots the column coordinates as points and the principle components of each row as arrows.

	xax: integer

	Specifies which PC axis to plot on the x-axis.

	yax: integer

	Specifies which PC axis to plot on the y-axis.

	obsNames: [True | False]

	Denotes whether to plot a scatterplot of points (False) or to actually show the names of the observations, as taken from the DataFrame index (True).

Examples

Hill and Smith analysis of the dune_env data:

import ecopy as ep
dune_env = ep.load_data('dune_env')
dune_env = dune_env[['A1', 'Moisture', 'Manure', 'Use', 'Management']]
print ep.hillsmith(dune_env).summary().iloc[:,:2]

 Axis 1 Axis 2
 Std. Dev 1.594392 1.363009
 Prop Var 0.317761 0.232224
 Cum Var 0.317761 0.549985

ep.hillsmith(dune_env).biplot(obsNames=False, invert=False)

[image: _images/hs_biplot.png]

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

Matrix Comparisons

Ecopy contains several methods for comparing matrices. Some of these are similar to ordination, while others are more traditional null hypothesis testing.

	Mantel (Mantel test)

	anosim (Analysis of similarity)

	simper() (Percentage similarity calculations)

	procrustes_test (Procrustes test of matrix correlations)

	corner4 (Fourth corner analysis)

	rlq (RLQ analysis)

	rda (RDA analysis)

	cca (CCA analysis)

	ccor (CCor analysis)

	
class Mantel(d1, d2, test='pearson', tail='both', nperm=999)

	Takes two distance matrices for a Mantel test. Returns object of class Mantel. Calculates the cross-product between lower triangle matrices, using either standardized variables or standardized ranks. The test statistics is the cross-product is divided by

[image: \frac{n(n-1)}{2} - 1]

where n is the number of objects.

Parameters

	d1: numpy.ndarray or pandas.DataFrame

	First distance matrix.

	d2: numpy.nadarray or pandas.DataFrame

	Second distance matrix.

	test: [‘pearson’ | ‘spearman’]

	‘pearson’ performs Mantel test on standardized variables.

‘spearman’ performs Mantel test on standardized ranks.

	tail: [‘both’ | ‘greater’ | ‘lower’]

	‘greater’ tests the one-tailed hypothesis that correlation is greater than predicted.

‘lower’ tests hypothsis that correlation is lower than predicted.

‘both’ is a two-tailed test.

	nperm: int

	Number of permutations for the test.

Attributes

	
r_obs

	Observed correlation statistic.

	
pval

	p-value for the given hypothesis.

	
tail

	The tested hypothesis.

	
test

	Which of the statistics used, ‘pearson’ or ‘spearman’.

	
perm

	Number of permutations.

Methods

	
classmethod summary()

	Prints a summary output table.

Examples

Load the data:

import ecopy as ep
v1 = ep.load_data('varespec')
v2 = ep.load_data('varechem')

Standardize the chemistry variables and calculate distance matrices:

v2 = v2.apply(lambda x: (x - x.mean())/x.std(), axis=0)
dist1 = ep.distance(v1, 'bray')
dist2 = ep.distance(v2, 'euclidean')

Conduct the Mantel test:

mant = ep.Mantel(dist1, dist2)
print mant.summary()

Pearson Mantel Test
Hypothesis = both

Observed r = 0.305 p = 0.004
999 permutations

	
class anosim(dist, factor1, factor2=None, nested=False, nperm=999)

	Conducts analysis of similarity (ANOSIM) on a distance matrix given one or two factors (groups). Returns object of anosim. Calculates the observed R-statistic as

[image: R = \frac{r_b - r_w}{\frac{n(n-1)}{4}}]

where [image: r_w] is the average within-group ranked distances, [image: r_b] is the average between-group ranked distances, and n is the number of objects (rows) in the distance matrix. The factor is then randomly permuted and R recalculated to generate a null distribution.

Parameters

	dist: numpy.ndarray or pandas.DataFrame

	Square-symmetric distance matrix.

	factor1: numpy.nadarray or pandas.Series or pandas.DataFrame

	First factor.

	factor2: numpy.nadarray or pandas.Series or pandas.DataFrame

	Second factor.

	nested: [True | False]

	Whether factor1 is nested within factor2. If False, then factor1 and factor2 are permuted independently. If Tue, then factor1 is permuted only within groupings of factor2.

	nperm: int

	Number of permutations for the test.

Attributes

	
r_perm1

	Permuted R-statistics for factor1.

	
r_perm2

	Permuted R-statistics for factor1.

	
R_obs1

	Observed R-statistic for factor1.

	
R_obs2

	Observed R-statistic for factor2.

	
pval

	List of p-values for factor1 and factor2.

	
perm

	Number of permutations.

Methods

	
classmethod summary()

	Prints a summary output table.

	
classmethod plot()

	Plots a histogram of R values.

Examples

Load the data:

import ecopy as ep
data1 = ep.load_data('dune')
data2 = com.load_data('dune_env')

Calculate Bray-Curtis dissimilarity on the ‘dune’ data, save the ‘Management’ factor as factor1 and generate factor2:

duneDist = ep.distance(data1, 'bray')
group1 = data2['Management']
group2map = {'SF': 'A', 'BF': 'A', 'HF': 'B', 'NM': 'B'}
group2 = group1.map(group2map)

Conduct the ANOSIM:

t1 = ep.anosim(duneDist, group1, group2, nested=True, nperm=9999)
print t1.summary()

ANOSIM: Factor 1
Observed R = 0.299
p-value = 0.0217
9999 permutations

ANOSIM: Factor 2
Observed R = 0.25
p-value = 0.497
9999 permutations

t1.plot()

[image: _images/anosimFig.png]

	
simper(data, factor, spNames=None)

	Conducts a SIMPER (percentage similarity) analysis for a site x species matrix given a grouping factor. Returns a pandas.DataFrame containing all output for each group comparison. Percent similarity for each species is calculated as the mean Bray-Curtis dissimilarity of each species, given by:

[image: \Delta_i = \frac{|y_{ik} - y_{ij}|}{\sum_i^n (y_{ik} + y_{ij})}]

The denominator is the total number of individuals in both sites, [image: y_{ik}] is the number of individuals of species i in site k, and [image: y_{ij}] is the number of individuals in site j. This is performed for every pairwise combination of sites across two groups and then averaged to yield the mean percentage similarity of the species. This function also calculates the standard deviation of the percentage similarity, the signal to noise ratio (mean / sd) such that a higher ratio indicates more consistent difference, the percentage contribution of each species to the overall difference, and the cumulative percentage difference.

The output is a multi-indexed DataFrame, with the first index providing the comparison and the second index providing the species. The function lists the index comparison names as it progresses for reference.

Parameters

	data: numpy.ndarray or pandas.DataFrame

	A site x species matrix.

	factor: numpy.nadarray or pandas.Series or pandas.DataFrame or list

	Grouping factor.

	spNames: list

	List of species names. If data is a pandas.DataFrame, then spNames is inferred as the column names. If data is a np.ndarray, then spNames is given integer values unless this argument is provided.

Examples

Conduct SIMPER on the ANOSIM data from above:

import ecopy as ep

data1 = ep.load_data('dune')
data2 = com.load_data('dune_env')
group1 = data2['Management']
fd = ep.simper(np.array(data1), group1, spNames=data1.columns)

Comparison indices:
BF-HF
BF-NM
BF-SF
HF-NM
HF-SF
NM-SF

print fd.ix['BF-NM']

 sp_mean sp_sd ratio sp_pct cumulative
Lolipere 9.07 2.64 3.44 12.43 12.43
Poatriv 5.47 4.46 1.23 7.50 19.93
Poaprat 5.25 1.81 2.90 7.19 27.12
Trifrepe 5.13 2.76 1.86 7.03 34.15
Bromhord 3.97 2.92 1.36 5.44 39.59
Bracruta 3.57 2.87 1.24 4.89 44.48
Eleopalu 3.38 3.57 0.95 4.63 49.11
Agrostol 3.34 3.47 0.96 4.58 53.69
Achimill 3.32 2.34 1.42 4.55 58.24
Scorautu 3.14 2.03 1.55 4.30 62.54
Anthodor 2.81 3.29 0.85 3.85 66.39
Planlanc 2.73 2.19 1.25 3.74 70.13
Salirepe 2.68 2.93 0.91 3.67 73.80
Bellpere 2.35 1.91 1.23 3.22 77.02
Hyporadi 2.17 2.45 0.89 2.97 79.99
Ranuflam 2.03 2.28 0.89 2.78 82.77
Elymrepe 2.00 2.93 0.68 2.74 85.51
Callcusp 1.78 2.68 0.66 2.44 87.95
Juncarti 1.77 2.60 0.68 2.43 90.38
Vicilath 1.58 1.45 1.09 2.17 92.55
Sagiproc 1.54 1.86 0.83 2.11 94.66
Airaprae 1.34 1.97 0.68 1.84 96.50
Comapalu 1.07 1.57 0.68 1.47 97.97
Alopgeni 1.00 1.46 0.68 1.37 99.34
Empenigr 0.48 1.11 0.43 0.66 100.00
Rumeacet 0.00 0.00 NaN 0.00 100.00
Cirsarve 0.00 0.00 NaN 0.00 100.00
Chenalbu 0.00 0.00 NaN 0.00 100.00
Trifprat 0.00 0.00 NaN 0.00 100.00
Juncbufo 0.00 0.00 NaN 0.00 100.00

	
class procrustes_test(mat1, mat2, nperm=999)

	Conducts a procrustes test of matrix associations on two raw object x descriptor matrices. Returns an object of class procrustes_test. First, both matrices are column-centered. Then, each matrix is divided by the square root of its sum-of-squares. The test statistic [image: m_{12}^2] is calculated as:

[image: m_{12}^2 = 1 - (Trace \mathbf{W})^2]

[image: \mathbf{W}] is the diagonal matrix of eigenvalues for [image: \mathbf{X'Y}], which are the two transformed matrices. Then, rows of X are randomly permuted and the test statistic recalculated. The p-value is the the proportion of random test statistics less than the observed statistic.

Parameters

	mat1: numpy.ndarray or pandas.DataFrame

	A raw object x descriptor (site x species) matrix.

	factor1: numpy.nadarray or pandas.DataFrame

	A raw object x descriptor (site x descriptor) matrix.

	nperm: int

	Number of permutations in the test.

Attributes

	
m12_obs

	Observed [image: m_{12}^2] statistic.

	
pval

	p-value.

	
perm

	Number of permutations.

Methods

	
classmethod summary()

	Prints a summary output table.

Examples

Load the data and run the Mantel test:

import ecopy as ep

d1 = ep.load_data('varespec')
d2 = ep.load_data('varechem')
d = ep.procrustes_test(d1, d2)
print d.summary()

m12 squared = 0.744
p = 0.00701

	
class corner4(mat1, mat2, nperm=999, model=1, test='both', p_adjustment=None)

	Conducts fourth corner analysis examining associations between species traits and environmental variables. Species traits are given in a species x trait matrix Q, species abundances given in a site x species matrix L, and environmental traits given in a site x environment matrix R. The general concept of fourth corner analysis is to find matrix D:

[image: \begin{bmatrix} \mathbf{L} & \mathbf{R} \\ \mathbf{Q'} & \mathbf{D} \end{bmatrix}]

In a simple case, R and Q contain one environmental variable and one species trait. An expanded correspondance matrix is created following Dray and Legendre (2008). The association between R and Q is the calculated as follows:

	If both variables are quantitative, then association is described by Pearson’s correlation coefficient r

	If both variables are qualitative, then association is described by [image: \chi^2] from a contingency table (see Dray and Legendre 2008, Legendre and Legendre 2011)

	If one variable is quantitative but the other is qualitative, then association is described using the F-statistic.

Significance of the statistics is determined using one of four permutation models (see below).

If R and Q contain more than one variable or trait, then the test iterates through all possible environment-trait combinations. The method automatically determines the appropriates statistics, depending on the data types (float=quantitative or object=qualitative). NOTE: As of now, this is quite slow if the number of traits and/or environmental variables is large.

Parameters

	R: pandas.DataFrame

	A site x variable matrix containing environmental variables for each site. pandas.Series NOT allowed.

	L: numpy.nadarray or pandas.DataFrame

	A site x species matrix of either presence/absence or abundance. Only integer values allowed.

	Q: pandas.DataFrame

	A species x trait matrix containing trait measurements for each species. pandas.Series NOT allowed.

	nperm: int

	Number of permutations in the test.

	model: [1 | 2 | 3 | 4]

	Which model should be used for permutations.

1: Permutes within columns of L only (that is, shuffles species among sites).

2: Permutes entire rows of L (that is, shuffles entire species assemblages).

3: Permutes within rows of L (that is, shuffles the distribution of individuals within a site).

4: Permutes entire columns of L (that is, shuffles a species’ distribution among traits, while site distributions are kept constant).

	test: [‘both’ | ‘greater’ | ‘lower’]

	Which tail of the permutation distribution should be tested against the observed statistic.

	p_adjustment: [None, ‘bonferroni’, ‘holm’, ‘fdr’]:

	Which adjustment should be used for multiple comparisons. ‘bonferroni’ uses Bonferronni correction, ‘holm’ uses the Bonferroni-Holm correction, and ‘fdr’ uses the False Discovery Rate correction.

Methods

	
classmethod summary()

	Returns a pandas.DataFrame of output.

Examples

Run fourth corner analysis on the aviurba data from R’s ade4 package:

import ecopy as ep

traits = ep.load_data('avi_traits')
env = ep.load_data('avi_env')
sp = ep.load_data('avi_sp')

fourcorn = ep.corner4(env, sp, traits, nperm=99, p_adjustment='fdr')
results = fourcorn.summary()

print results[['Comparison','adjusted p-value']]
 Comparison adjusted p-value
0 farms - feed.hab 1.000
1 farms - feed.strat 1.000
2 farms - breeding 1.000
3 farms - migratory 1.000
4 small.bui - feed.hab 0.322
5 small.bui - feed.strat 0.580
6 small.bui - breeding 1.000
7 small.bui - migratory 0.909
8 high.bui - feed.hab 0.111
...
41 veg.cover - feed.strat 1.000
42 veg.cover - breeding 0.033
43 veg.cover - migratory 1.000

	
class rlq(R, L, Q, ndim=2)

	Conducts RLQ analysis which examines associations between matrices R (site x environment) and Q (species x traits) as mediated by matrix L (site by species). In general, a matrix D is constructed by:

[image: \mathbf{D} = \mathbf{R'}\mathbf{D_{row}}\mathbf{L}\mathbf{D_{col}}\mathbf{Q}]

where [image: \mathbf{D_{row}}] and [image: \mathbf{D_{col}}] are diagonal matrices of row and column weights derived from matrix L. L is first transformed by dividing the matrix by the total number of individuals in the matrix. Column and row weights are given by the sum of columns and rows of the transformed matrix. Matrix L is then transformed by diving each column by the corresponding column weight, dividing each row by the corresponding row weight, and subtracting 1 from all elements. This transformed L matrix is used in the above equation to generate matrix D.

NOTE: Both R and Q can contain a mix of factor and quantitative variables. A dummy dataframe is constructed for both R and Q as in the Hill and Smith ordination procedure.

Matrix D is then subject to eigen decomposition, giving site (environment) and species (trait) scores, as well as loading vectors for both environmental and trait variables.

Parameters

	R: pandas.DataFrame

	A site x environment matrix for ordination, where objects are rows and descriptors/variables as columns. Can have mixed data types (both quantitative and qualitative). In order to account for factors, this method creates dummy variables for each factor and then assigns weights to each dummy column based on the number of observations in each column.

	L: pandas.DataFrame

	A site x species for ordination, where objects are rows and descriptors/variables as columns.

	Q: pandas.DataFrame

	A species x trait matrix for ordination, where objects are rows and descriptors/variables as columns. Can have mixed data types (both quantitative and qualitative). In order to account for factors, this method creates dummy variables for each factor and then assigns weights to each dummy column based on the number of observations in each column.

	ndim: int

	Number of axes and components to save.

Attributes

	
traitVecs

	A pandas.DataFrame of trait loadings.

	
envVecs

	A pandas.DataFrame of environmental loadings.

	
normedTraits

	Species coordinates along each axis.

	
normedEnv

	Site coordinates along each axis.

	
evals

	Eigenvalues for all axes (not just saved ones).

Methods

	
classmethod summary()

	Returns a data frame containing information about the principle axes.

	
classmethod biplot(xax=1, yax=2)

	Create a biplot. The plot contains four subplots, one each for species scores, site scores, trait vectors, and environment vectors. Species scores are plotted from normedTraits, site scores are plotted from normedEnv, trait vectors are plotted from traitVecs, and environmental vectors are plotted from envVecs. Users can mix and match which vectors to overlay with which points manually using these four attributes.

	xax: integer

	Specifies which PC axis to plot on the x-axis,

	yax: integer

	Specifies which PC axis to plot on the y-axis.

Examples

RLQ analysis of the aviurba data:

vi_sp = ep.load_data('avi_sp')
avi_env = ep.load_data('avi_env')
avi_traits = ep.load_data('avi_traits')

rlq_test = ep.rlq(avi_env, avi_sp, avi_traits, ndim=2)
print rlq_test.summary().iloc[:,:3]

 Axis 1 Axis 2 Axis 3
Std. Dev 0.691580 0.376631 0.272509
Prop Var 0.657131 0.194894 0.102031
Cum Var 0.657131 0.852026 0.954056

rlq_test.biplot()

[image: _images/rlq.png]

	
class rda(Y, X, scale_y=True, scale_x=False, design_x=False, varNames_y=None, varNames_x=None, rowNames=None, pTypes=None)

	Conducts RDA analysis which examines the relationship between sites (rows) based on their species compositions (columns). This information is contained in matrix Y. However, the relationships between sites are constrained by environmental predictors contained in matrix X.

RDA performs a multivariate regression of Y against X, yielding linear predictors B:

[image: \mathbf{B} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}]

These linear predictors are used to generated predicted values for each species at each site:

[image: \mathbf{\hat{Y}} = \mathbf{XB}]

The variance-covariance matrix of [image: \mathbf{\hat{Y}}] is then subject to eigen-analysis, yielding eigenvalues L and eigenvectors U of the predicted species values. Three new matrices are calculated:

[image: \mathbf{F} = \mathbf{YU} \mathbf{Z} = \mathbf{\hat{Y}U} \mathbf{C} = \mathbf{BU}]

Species scores are given by [image: \mathbf{U}\mathbf{L}^{-0.5}]. Site scores are given by [image: \mathbf{F}\mathbf{L}^{-0.5}]. The scores of each predictor are given in matrix C.

The residuals from the regression are then subject to PCA to ordinate the remaining, unconstrained variance.

Parameters

	Y: pandas.DataFrame or numpy.ndarray

	A site x species for ordination, where objects are rows and descriptors/variables as columns.

	X: pandas.DataFrame or numpy.ndarray

	A site x environment matrix for ordination, where objects are rows and descriptors/variables as columns. Only the pandas.DataFrame can have mixed data types (both quantitative and qualitative). In order to account for factors, this method creates dummy variables for each factor and then assigns weights to each dummy column based on the number of observations in each column.

	scale_x: [True | False]

	Whether or not the matrix Y should be standardized by columns.

	scale_y: [True | False]

	Whether or not the matrix X should be standardized by columns.

	design_x: [True | False]

	Whether or not X has already been transformed to a design matrix. This enables the user to formulate more complicated regressions that include interactions or higher order variables.

	varNames_y: list

	A list of variables names for each column of Y. If None, then the column names of Y are used.

	varNames_x: list

	A list of variables names for each column of X. If None, then the column names of X are used.

	rowNames: list

	A list of site names for each row. If none, then the index values of Y are used.

	pTypes: list

	A list denoting whether variables in X are quantitative (‘q’) or factors (‘f’). Can usually be ignored.

Attributes

	
spScores

	A pandas.DataFrame of species scores on each RDA axis.

	
linSites

	A pandas.DataFrame of linearly constrained site scores.

	
siteScores

	A pandas.DataFrame of site scores on each RDA axis.

	
predScores

	A pandas.DataFrame of predictor scores on each RDA axis.

	
RDA_evals

	Eigenvalues for each RDA axis.

	
corr

	Correlation of each predictor with each RDA axis.

	
resid_evals

	Eigenvalues for residual variance.

	
resid_spScores

	A pandas.DataFrame of species scores on PCA of residual variance.

	
resid_siteScores

	A pandas.DataFrame of site scores on PCA of residual variance.

	
imp

	Summary of importance of each RDA and PCA axis.

Methods

	
classmethod summary()

	Returns a data frame containing summary information.

	
classmethod triplot(xax=1, yax=2)

	Creates a triplot of species scores, site scores, and predictor variable loadings. If predictors are factors, they are represented by points. Quantitative predictors are represented by arrows.

	xax: integer

	Specifies which RDA axis to plot on the x-axis.

	yax: integer

	Specifies which RDA axis to plot on the y-axis.

Examples

RDA on dune data:

import ecopy as ep

dune = ep.load_data('dune')
dune_env = ep.load_data('dune_env')

RDA = ep.rda(dune, dune_env[['A1', 'Management']])
RDA.triplot()

[image: _images/rda.png]

	
class cca(Y, X, varNames_y=None, varNames_x=None, rowNames=None, scaling=1)

	Conducts CCA analysis which examines the relationship between sites (rows) based on their species compositions (columns). This information is contained in matrix Y. However, the relationships between sites are constrained by environmental predictors contained in matrix X.

CCA first transforms the species matrix Y into matrix [image: \bar{\mathbf{Q}}] as in correspondance analysis. The predictor matrix X is then standardized using the row weights from matrix Y to calculate the mean and standard deviation of each column, resulting in a new matrix [image: \mathbf{X}_{scale}]. This matrix, along with a diagonal matrix of row weghts D is used in a multivariate regression of [image: \bar{\mathbf{Q}}] against [image: \mathbf{X}_{scale}], yielding linear predictors B:

[image: \mathbf{B} = (\mathbf{X}_{scale}'\mathbf{DX}_{scale})^{-1}\mathbf{X}_{scale}'\mathbf{D^{0.5}Y}]

These linear predictors are used to generated predicted values for each species at each site:

[image: \mathbf{\hat{Y}} = \mathbf{D^{0.5}X_{scale}B}]

The cross-product matrix of [image: \mathbf{\hat{Y}}] is then subject to eigen-analysis, yielding eigenvalues L and eigenvectors U of the predicted species values. Five new matrices are calculated using diagonal matrices of row [image: \mathbf{D}_{r}] and column [image: \mathbf{D}_{c}] weights:

[image: \hat{\mathbf{U}} = \bar{\mathbf{Q}}\mathbf{UL^{-0.5}} \mathbf{V} = \mathbf{D_c^{-0.5}U} \hat{\mathbf{V}} = \mathbf{D_r^{-0.5}}\hat{\mathbf{U}} \mathbf{F} = \hat{\mathbf{V}}\mathbf{L^{0.5}} \hat{\mathbf{F}} = \mathbf{VL^{0.5}}]

In scaling type 1, species scores are given by V and site scores are given by F. Fitted site scores are given by [image: \mathbf{D_r}\hat{\mathbf{Y}}\mathbf{U}]. To calculate the predictor scores, the fitted site scores are standardized using row weights as was done for [image: \mathbf{X}_{scale}], yielding [image: \mathbf{Z}_{scale}]. Predictor variable scores are then calculated as [image: \mathbf{X}_{scale}'\mathbf{D_rZ}_{scale}\mathbf{L^{0.5}}].

In scaling type 2, species scores are given by [image: \hat{\mathbf{F}}] and site scores are given by [image: \hat{\mathbf{V}}]. Fitted site scores are given by [image: \mathbf{D_r}\hat{\mathbf{Y}}\mathbf{UL^{-0.5}}]. To calculate the predictor scores, the fitted site scores are standardized using row weights as was done for [image: \mathbf{X}_{scale}], yielding [image: \mathbf{Z}_{scale}]. Predictor variable scores are then calculated as [image: \mathbf{X}_{scale}'\mathbf{D_rZ}_{scale}].

Residuals from the constrained ordination are available in order to subject them to CA.

Parameters

	Y: pandas.DataFrame or numpy.ndarray

	A pandas.DataFrame or numpy.ndarray containing species abundance data (site x species).

	X: pandas.DataFrame or numpy.ndarray

	A pandas.DataFrame or numpy.ndarray containing predictor variables for constrained ordination (site x variable).

	varNames_y: list

	A list of variables names for each column of Y. If None, then the column names of Y are used.

	varNames_x: list

	A list of variables names for each column of X. If None, then the column names of X are used.

	rowNames: list

	A list of site names for each row. If none, then the index values of Y are used.

	scaling: [1 | 2]

	Which scaling should be used. See above.

Attributes

	
r_w

	Row weights.

	
c_w

	Column weights.

	
evals

	Constrained eigenvalues.

	
U

	Constrained eigenvectors.

	
resid

	A pandas.DataFrame of residuals from the constrained ordination.

	
spScores

	A pandas.DataFrame of species scores.

	
siteScores

	A pandas.DataFrame of site scores.

	
siteFitted

	A pandas.DataFrame of constrained site scores.

	
varScores

	A pandas.DataFrame variable scores.

Methods

	
classmethod summary()

	Returns summary information of each CA axis.

	
classmethod triplot(xax=1, yax=2)

	Creates a triplot of species scores, site scores, and predictor variable loadings.

	xax: integer

	Specifies which CA axis to plot on the x-axis.

	yax: integer

	Specifies which Ca axis to plot on the y-axis.

Examples

CCA on varespec data:

import ecopy as ep

varespec = ep.load_data('varespec')
varechem = ep.load_data('varechem')

cca_fit = ep.cca(varespec, varechem)
CCA.triplot()

[image: _images/cca.png]

	
class ccor(self, Y1, Y2, varNames_1=None, varNames_2=None, stand_1=False, stand_2=False, siteNames=None)

	Conducts canonical correlation analysis (CCor) which examines the relationship between matrices Y1 and Y2. CCor first calculates the variance and covariance matrices for both Y1 and Y2, where [image: \mathbf{S}_{11}] is the variance-covariance matrix of Y1, [image: \mathbf{S}_{22}] is the variance-covariance matrix of Y2, and [image: \mathbf{S}_{12}] is the covariance matrix of Y1 and Y2.

A new matrix K is calculated as

[image: \mathbf{K} = \mathbf{S}_{11}^c \mathbf{S}_{12} \mathbf{S}_{22}^c]

where [image: \mathbf{S}_{11}^c] is the Cholesky decomposition of [image: \mathbf{S}_{11}] and same for [image: \mathbf{S}_{22}^c].

CCor then uses SVD to calculate matrices V, W, and U, where V contains the left-hand eigenvectors, W contains the singular values, and U contains the right-hand eigenvectors. New matrices C1 and C2 are derived by Y1V and Y2U, respectively. Scores for matrices Y1 are then

[image: \mathbf{\text{Scores}_1} = \mathbf{Y1C1}]

and the same for Y2. Variable loadings are the correlation between the original matrix and the scores.

Parameters

Y1: pandas.DataFrame or numpy.ndarray

A pandas.DataFrame or numpy.ndarray containing one set of variables.

Y2: pandas.DataFrame or numpy.ndarray

A pandas.DataFrame or numpy.ndarray containing a second set of variables.

varNames_1: list

A list of variables names for each column of Y1. If None, then the column names of Y1 are used.

varNames_2: list

A list of variables names for each column of Y2. If None, then the column names of Y2 are used.

siteNames: list

A list of site names for each row. If none, then the index values of Y1 are used.

stand_1: [True | False]

Whether to standardize Y1.

stand_2: [True | False]

Whether to standardize Y2.

Attributes

	
Scores1

	Site scores from matrix 1.

	
Scores2

	Site scores from matrix 2.

	
loadings1

	Variable loadings from matrix 1.

	
loadings2

	Variable loadings from matrix 2.

	
evals

	Eigenvalues.

Methods

	
classmethod summary()

	Returns summary information of each CA axis.

	
classmethod biplot(matrix=1, xax=1, yax=2)

	Creates a biplot of site scores and predictor variable loadings.

	matrix: [1 | 2]

	Which matrix, Y1 or Y2 to plot.

	xax: integer

	Specifies which CCor axis to plot on the x-axis.

	yax: integer

	Specifies which CCor axis to plot on the y-axis.

Examples

CCor analysis of random data:

import ecopy as ep
import numpy as np

Y1 = np.random.normal(size=20*5).reshape(20, 5)
Y2 = np.random.normal(size=20*3).reshape(20, 3)

cc = ep.ccor(Y1, Y2)
cc.summary()

Constrained variance = 1.37
Constrained variance explained be each axis
['0.722', '0.464', '0.184']
Proportion constrained variance
['0.527', '0.338', '0.135']

cc.biplot()

[image: _images/ccor.png]

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

References

Borg and Groenen (2005) Modern multidimensional scaling: theory and applications.

Clarke and Warwick (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E.

Doledec et al. (1996) Matching species traits to environmental variables: a new three-table ordination method. Environmental and Ecological Statistics 3:143-166.

Dray and Dufour (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22.

Dray and Legendre (2008) Testing the species-traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400-3412.

Heiser (1991) A generalized majoration method for least squares multidimensional scaling of pseudodistances that may be negative. Psychometrika 56:7-27.

Hill (1974) Correspondance analysis: a neglected multivariate method. Journal of the Royal Statistical Society - C 23:340-354.

Hill and Smith (1976) Principle component analysis of taxonomic data with multi-state discrete characters. Taxon 25:349-255.

Legendre and Legendre (2012) Numerical Ecology. Third Edition.

Pedregosa et al. (2001) Scikit-learn: marching learning in Python. Journal of Machine Learning Research 12”2825-2830.

ter Braak and Verdonschot (1995) Canonical correspondence analysis and related multivariate methods in ecology. Aquatic Sciences 57/3:255-289.

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecopy 0.0.8 documentation

License

EcoPy is distributed under the GNU GPL

Contact

If you need help or want to contribute, you can contact me at lemoine.nathan@gmail.com.

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ecopy 0.0.8 documentation

Version History

0.0.8

	Updated PCA to use SVD instead of eigen decomposition

0.0.7

	CCor

	CCA

	RDA

	RLQ analysis

	Hill and Smith ordination

	weighted mean, variance, scaling

0.0.6

	procrustes test of matrix associations

	anosim class for analysis of similarity

	mantel class for Mantel tests

	corner4 class for fourth corner analysis

	load_data function for importing datasets

0.0.5

	poca class for princple coordinate analysis

	MDS class for multidimensional scaling (uses isotonic regression from scikit-learn)

	small changes and fixes to previous functions

0.0.4

	ca class for simple correspondance analysis

0.0.3

	diversity function for calculation species diversity

	rarefy function for rarefaction

0.0.2

	distance function for calculating distance matrices using a wide variety of coefficients and metrics

	transform function for transforming matrices

0.0.1

	nls class for non-linear regression

	pca class for principle components analysis

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ecopy 0.0.8 documentation

Index

 A
 | B
 | C
 | D
 | E
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	anosim (built-in class)

B

 	

 	biplot() (ca class method)

 	

 	(MDS class method)

 	(ccor class method)

 	(hillsmith class method)

 	(pca class method)

 	(pcoa class method)

 	(rlq class method)

C

 	

 	c_w (cca attribute)

 	ca (built-in class)

 	cca (built-in class)

 	ccor (built-in class)

 	column_coords (hillsmith attribute)

 	corner4 (built-in class)

 	

 	corr (rda attribute)

 	correction (pcoa attribute)

 	correlationPlots() (MDS class method)

 	correlations() (MDS class method)

 	cumDesc_Site (ca attribute)

 	cumDesc_Sp (ca attribute)

D

 	

 	distance() (built-in function)

 	

 	diversity() (built-in function)

E

 	

 	envVecs (rlq attribute)

 	evals (cca attribute)

 	

 	(ccor attribute)

 	(hillsmith attribute)

 	(pca attribute)

 	(pcoa attribute)

 	(rlq attribute)

 	

 	evecs (pca attribute)

H

 	

 	hillsmith (built-in class)

I

 	

 	imp (rda attribute)

L

 	

 	linSites (rda attribute)

 	loadings1 (ccor attribute)

 	

 	loadings2 (ccor attribute)

M

 	

 	m12_obs (procrustes_test attribute)

 	Mantel (built-in class)

 	

 	MDS (built-in class)

N

 	

 	normedEnv (rlq attribute)

 	

 	normedTraits (rlq attribute)

O

 	

 	obs (MDS attribute)

P

 	

 	pca (built-in class)

 	pcoa (built-in class)

 	perm (anosim attribute)

 	

 	(Mantel attribute)

 	(procrustes_test attribute)

 	plot() (anosim class method)

 	pr_axes (hillsmith attribute)

 	

 	pr_components (hillsmith attribute)

 	predScores (rda attribute)

 	procrustes_test (built-in class)

 	pval (anosim attribute)

 	

 	(Mantel attribute)

 	(procrustes_test attribute)

R

 	

 	r_obs (Mantel attribute)

 	R_obs1 (anosim attribute)

 	R_obs2 (anosim attribute)

 	r_perm1 (anosim attribute)

 	r_perm2 (anosim attribute)

 	r_w (cca attribute)

 	rarefy() (built-in function)

 	rda (built-in class)

 	

 	RDA_evals (rda attribute)

 	resid (cca attribute)

 	resid_evals (rda attribute)

 	resid_siteScores (rda attribute)

 	resid_spScores (rda attribute)

 	rlq (built-in class)

 	row_coords (hillsmith attribute)

S

 	

 	scores (MDS attribute)

 	

 	(pca attribute)

 	Scores1 (ccor attribute)

 	Scores2 (ccor attribute)

 	shepard() (MDS class method)

 	

 	(pcoa class method)

 	simper() (built-in function)

 	siteFitted (cca attribute)

 	siteScores (ca attribute)

 	

 	(cca attribute)

 	(rda attribute)

 	

 	spScores (ca attribute)

 	

 	(cca attribute)

 	(rda attribute)

 	stress (MDS attribute)

 	summary() (anosim class method)

 	

 	(Mantel class method)

 	(ca class method)

 	(cca class method)

 	(ccor class method)

 	(corner4 class method)

 	(hillsmith class method)

 	(pcoa class method)

 	(procrustes_test class method)

 	(rda class method)

 	(rlq class method)

 	summary_desc() (pca class method)

 	summary_imp() (pca class method)

 	summary_rot() (pca class method)

T

 	

 	tail (Mantel attribute)

 	test (Mantel attribute)

 	traitVecs (rlq attribute)

 	

 	transform (MDS attribute)

 	transform() (built-in function)

 	triplot() (cca class method)

 	

 	(rda class method)

U

 	

 	U (ca attribute)

 	

 	(cca attribute)

 	(pcoa attribute)

 	

 	Uhat (ca attribute)

V

 	

 	varScores (cca attribute)

W

 	

 	w_col (ca attribute)

 	w_row (ca attribute)

 	

 	wt_mean() (built-in function)

 	wt_var() (built-in function), [1]

 Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

 _images/math/d641a4d5c07b52144f5b91fbd1b35246dc6cf4ff.png
Yik =

Jik

0
VAT

_images/math/e3686850006af980ac884e07e4a05c342515b46b.png

_images/math/8430160d872981247a4ce54beb233a42840dbbb5.png

_images/math/2acd72c52a6b54bc71897ee6b8c387dce396a7a5.png
599

_images/corrpca.png
PC2

No|

Mississippi
North Caprg\ina

South Carolina

Verkiest Virginia i
Georgia
ArkansasAlabamap|aska

South Dakof§™UY Tennessisiana

[th Dakota pont:
Maine onvwoa ing . Fland
idaho Y Vifnia Hiexic
lew Haypashire " ; Rorida
Nebfkéwga chigan
Wi yIvakEego :
i9a0mEBBRF i IiRisanz Nevada
Connecti uﬁshlnglm) Ralorado

RifpidipRgelessey California

PC1

_images/rarecurve.png
35

120

100

o =) o
5 8 I

s9123dS Jo JaquinN

20

200 300 400 500 600 700

100

Number of Individuals

_images/math/d133521d7912c4c8bc129d5b4c958a80d0a1654f.png
UAY?

_images/anosimFig.png
Factor 1

3.5F
Observed R
-0.4 —-0.2 0.0 0.2 0.4 0.6 0.8
18 REQQQE@r
16} - = (Observed R
14}
S, 12t
= 10}
S 8
0O 6
4
2
O 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

R-statistic

_images/math/0e32cec8ce23ac5b4674063ba99feab7bf6de049.png

_images/pcoa_arrests.png
PCoA Axis 2

25
20
15
10
0.5
o)
-0.5
Ne

-1.0

=15

Mississippi
North Caro;\)i‘r)va
South Carolina
West Vir
Georgig diianoht
Alaska Alabama Arkansas
LouisiEnmessee Kentucky s outh Dakota
Maryland Montana North bakota
aryian \Wyoming Maine
4 New Mexico A“g‘;;‘{.éﬂ i \daA|I10 . N
Michigan pmeshite
s Urbenegprennsylvagiaissensin
vada AegolEaRS [Ohio
Colorado Wa: hmgton(onnecticut
California New jedseniiggoidnnd
-3 -2 -1 0 1 2 3

-2.0

PCoA Axis 1

_static/up-pressed.png

_images/ca3.png
CA Axis 2

0.5

0.0

-0.5

1

17
R
30

At
3 3

A1 s

35

40

=25

-2.0

-15

-1.0
CA Axis 1

-0.5 0.0

_static/minus.png

_images/hs_biplot.png
Axis 2
o

14

13

10

16

Axis 1

_images/cca.png
CA2

lona e
T T FSFRRaeHS I !

~ Stersp
Vacculig Cladamau

DRLEHED N
_ Clagarbu
Flavniva Clad%?(g

|13g§,ypili Dicrfusc Baresoil

Fe Urel(J6
S doon H
pH
d?j
%sg Cetri
[adchlo
Cladstel

L Cladabul 1 L ’ :
TTATPPTTyT

-2 -1 0 1 2

sple

_images/rlq.png
3 I I I I 3 I I I I I I
47
Sp18
2k Sp9 2 48 -
Sp3 = 5
1 o 8
I S 18 15 4 |
~ S 44 30
n - 46
% 8 36
< o} - 0 1% 37 43 24
:E o 10 38 1 ;?% %% 3932
a Sip20 Sp1 = 14 B
c
-1} o -1 43 19 27 2528 §
Sp28 Sp33 SHzB =
L
Sp22 Sp19
-2} Sp34 -2 7 -
Sp37
_3 1 1 1 1 _3 1 1 1 1 1 1 1
-25 -20 -15 -10 -05 1.0 -20 15 -10 -05 00 05 10 15 20
Trait Axis 1 Environment Component 1
breedinggretrd T T T 1.0 T YeeoveERBorer RO
industry:yes
20F
0.5} deciduQus:g& hhy:no .
1.5F : _nir:yes
o fieldss fa \" S naisy:yes
..g 0.0 smpliBsiNreeasstand.yes _{
§ 10 B o) - oI ‘.‘;'.’ V :','4:~._"‘ ‘_,‘ ;. FR22
49 2 : 1!-'\k *i:Lv'=~ 8 . 73S
O © CQ
o ht:aerial © scrubhy
> 05F ® 05 -
= e veg.covef:R98
= building S
0.0F i E
w -1.0 .
-0.5}F
-1.0F _ -1.5 -
feed.strat:foliage
et veg.cover468 A . . .
-2.0 -1.5 -1.0 -0.5 1.5 -1.0 -0.5 0.0 0.5

Trait Vector 1

Environmental Vector 1

_images/dunesbiplot.png
NMDS Axis 2

2.0

Site 14
15k ESipedigr Comapalu]
Alr?lggagdl Salirepe Sitgag%és@o
i . Eleopalu -
1.0 Site 17 Ranuflam,
Site 16
,e Site 18 Juncarti
Anthopice 1.1 Scorafu!_Buracruta . Agrostol
Trifrepe
0.0 Ptartanc —F .
Site 6 Sagiproc .
AlopgentGizadBu
—0.5 Sltem |
%Wﬁ?g’@oatnv SIEODERE 1
Bromh%'r’&ere Site B
1.0} - '
—15} '
_20 |Slte 1 | : : I
—-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5

NMDS Axis 1

2.0

_static/down-pressed.png

_static/comment.png

_images/math/6fdb388258abdaf7dd0379a076c04b818551f7a0.png

_images/math/f017ac4d4323508ea0be99fea303b1ac8174986c.png
X erate Drdigeaie

_images/math/abab0c4bbaaf825b627c14acc80d47c1731f17d0.png

_images/math/f39351eac08bf9287632cba622eedb8e7e8c56ad.png

_images/dunecorrs.png
1.0

0.8

0.6

0.4
Observed Distance to Site

0.2

I I I I I I I
< L < LN < 10 < L
< o mM N N —i — o

9IS 01 @duelsig paid

<
0 oc
< o

_images/ccor.png
2.0

1.5F

CCor 2
o
(@)]

o
o
T

Sitg¢ 20

|
O
(&)
T

Site 11

Site 15

12

_images/duneshepard.png
4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

. Stress = 0.153

R2 = (0.928
[°Y 1 1 1 1
.0 0.2 0.4 0.6 0.8

1.0

_images/pcoa1.png
PCoA Axis 2

0.3

i
) ! Site 35
Slteéi?gmzls %Irtee%
01 ite Site 49ite|46 .
%&eé,%e 43_% Site Hite 25ite 28
1l e
" sitéggs 2
00 Site 42 pone 23 Ty s
Site 2L site 36 ;. Site 12
S_t1§’t1e 24
ite 5
-0.1 Steerl9
Stel g28e isite o
ite
-0.2 Gite 2 @g%
Site 5 sipatasPite 8
-0.3
04 -03 -02 -01 00 01 02

PCoA Axis 1

0.3

_images/rda.png
RDA 2

2.0

1.5F

1.0F

0.5

0.0

-1.0F

-2.5

ManagemePt:SF

Scorautu

10

16
17

15

14
13

19

-2.0

-1.5

-1.0

-0.5

0?0 0.I5
RDA 1

1.0

2.5

_images/math/5a235fbcb81e0b689080b22b0a5257e5769bce9a.png

_static/down.png

_images/math/7079fffb4af27935f19e7fbd69c2779ac744ca56.png

_images/ca_1.png
CA Axis 2

10

0.5

Spl

L1

Sp3

0.0

-0.5

-1.0

=15

Sp2

-15

-1.0

-0.5 0.0
CA Axis 1

0.5

10

_images/math/62baeac7294f963d2af959dc1d66dc9fe1dce932.png
Scoresy 1C1

_static/comment-bright.png

_static/up.png

_images/math/ace092fcb9cc843490add7d8abf6bce3768e62f1.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_images/math/c8413f3e43f8b4a9bb22c7ef7c316bcdc3d96506.png
Q D

_static/comment-close.png

_images/math/3f268a708132c0d88a0574dd96cc46b30da4d63a.png

_images/math/696f7dcea8c339c2e99447c9ad5473da53d7b62d.png

_images/math/1f9c28480cc3a235c90d71a3680a648fd29ad927.png

_images/math/62c815db7fb2036b18b7927cd4fcfaec6a8ba701.png

_images/math/5122b48e732e29c1a77900672db5a8e4bd6dc870.png
XB

_images/math/778961f6e818be28003110c691ea26ef4569e6c2.png
>11

_images/math/77112f5acf13f163dded7201f4de3ebc2763d612.png
F1,Y°

_images/math/95cccfe209030b5042e1392c4c6b83658707a877.png
max P

_images/math/5efc5b2f8d1151de86e902242ee72f6e124c0f4e.png

_images/math/4abe6eeb6472f05582d7d463433ffe7129c94535.png

_images/math/3bf782cc2e408dc33ccee516e39243c28cdc57bf.png

_images/math/1a989c11d476af13aa046374e1a8f85ccea7cce7.png
K = S7;51255%

_images/math/2eef389471220470db8b83f23f04592d087457bc.png

_images/math/353b8f1a7df90a5ce86eac1bb8d273b4490b0f31.png

_images/math/9e17054c1b55ddffb03a10cb678f5227b32c8963.png

_images/math/c06b21ac24a2e247177d2a4e4213e58cb20c382d.png
U, = UAY?

_images/math/30c877858e7352f5cbc9923b1d170308bda3d5ed.png
L
D12 =05 |on — 7o
-

_images/math/c6eb0159a7b777a22ee9f2d603b1ae327d5f329c.png

_images/math/2c7b9296240b6550e799956254fad307a2766f79.png

_images/math/1cfc1f71daf2970db845a4c39f8293f2025d16d7.png
2 _ 2 wilTi — pw)”
S w;

_images/math/f1f5530bda26efe81944a03dfe548d6c346ce03e.png
FA Y2

_images/math/f9de19f96ade95b286140e1ce133422270315246.png

_images/math/272c62c44455c90173267b1bafdf7ecebd6bc316.png
LD

_images/math/4f1ba62f0989115cc1f7b4384d0522ea8698501c.png

_images/math/c7a1a2c7a9eb77261a80fb77f228692bfc7a8b11.png

_images/math/32745e2fd66615934989f3c76dc5e525d05c007b.png

_images/math/a90634b31b425736cdf40fb47718a05e2a05b56a.png
U =QUL %V =D %Uuv = D% Ur

_images/math/0ec43b34723395c79910dae9dbc2c66cec490c32.png

_images/math/08a09b10d97dccd5c5ab2f31589a08cae5e38fef.png
Y15

_images/math/094b3bd9ceb28f841bf719bf0ca34f818c2fd2c6.png
S12

A1 BrC

_images/math/1a51da6f53710960c408602806b5db5ac5305b60.png
X' DXeate) X, DY

_images/math/170d80d85ef6cac5d0e2913fa9c1e9065f716970.png
proj

Vn —1SA™%°

_images/math/a3fceb6e96aecc52af8c97ae49285919e0ca161b.png
U =QUA Y

_images/math/080ce6dd6d5be4d5fdb4ea5c4c0d76b2a80e8e3e.png

_images/math/7dd92825e6d97342cea5933e3adf93b70b4f7595.png

_images/math/f23df85efa102678fd4215883b7fb7a0f8c59ae6.png

_images/math/5ce8254cbf51b278c088a8142de1fc41506eab03.png
1k — i

A=

_images/math/b28d5305bd7d89b5d0c0274749ce32b2ae1b030c.png
j4s

_images/math/54491a2fad7b1ee3750c428356536c1a92778685.png

_images/math/6b8a5226de1f6b539055e3603e008b56c95c99a8.png

_images/math/b33a01c5f88a79a5c3acf446a67b56840d003610.png

search.html

 Navigation

 		
 index

 		ecopy 0.0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

_images/math/b4e1bc8e2dfd2c26158273aef285b08a816f960a.png
oy

_images/math/1d1d409d6ca22f2875722197110f24ef244c9175.png

_images/math/c38ea188d349cbd01ceb31cd2bb786ea3bd8a486.png
Zymin(ek, 7a) | 3y min(ei, 72)

S1.2 = 0.5 el TR
12 = 05 = e

_images/math/d1929c9e1002e67a2164c6440efbe0ad4e42073e.png

_images/math/61a0df404147235966102d1ced9bf3f986b85e16.png

basefuncs.html

 Navigation

 		
 index

 		ecopy 0.0.8 documentation »

Base Functions

EcoPy contains several basic functions:

		wt_mean()

		wt_var()

		wt_scale()

		
wt_mean(x, wt=None)

		Calculates as weighted mean. Returns a float.

[image: \mu = \frac{\sum x_iw_i}{\sum w_i}]

Parameters

		x: numpy.ndarray or list

		A vector of input observations

		wt: numpy.ndarray or list

		A vector of weights. If this vector does not sum to 1, this will be transformed internally by dividing each weight by the sum of weights

Example

Weighted mean:

import ecopy as ep
print ep.wt_mean([1,3,5], [1,2,1])

		
wt_var(x, wt=None)

		Calculates as weighted variance. Returns a float.

[image: \sigma^2 = \frac{\sum w_i(x_i - \mu_w)^2}{\sum w_i}]

where [image: \mu_w] is the weighted mean.

Parameters

		x: numpy.ndarray or list

		A vector of input observations

		wt: numpy.ndarray or list

		A vector of weights. If this vector does not sum to 1, this will be transformed internally by dividing each weight by the sum of weights

Example

Weighted variance:

import ecopy as ep
print ep.wt_var([1,3,5], [1,2,1])

		
wt_var(x, wt=None)

		Returns a vector of scaled, weighted observations.

[image: z = \frac{x-\mu_w}{\sigma_w}]

where [image: \mu_w] is the weighted mean and [image: \sigma_w] is weighted standard deviation (the square root of weighted variance).

Parameters

		x: numpy.ndarray or list

		A vector of input observations

		wt: numpy.ndarray or list

		A vector of weights. If this vector does not sum to 1, this will be transformed internally by dividing each weight by the sum of weights

Example

Weighted variance:

import ecopy as ep
print ep.wt_scale([1,3,5], [1,2,1])

 © Copyright 2015, Nathan Lemoine.
 Created using Sphinx 1.3.1.

_images/math/4912e81709b8cc9b76c4b0f7e0382f4d4b9481ef.png

_images/math/bd10c693c8bea2aa25871664f3839a819848116c.png
19

_images/math/7e2665c84a9ebf17a9f9326df5a0e56ffe3973e3.png
pit = Y/ 3.1 34

_images/math/bddafdba567e077d725c2cafbf24fe43bb1c089a.png

_images/math/212f17ce92c1a8920187886d2565b5f654006e92.png

_images/math/15f8bfe882526a3ae34238f419685280f115d4af.png
D, YUL 95

_images/math/9ede9faf1a30fe208d4b9fa138db6649c7782911.png

_images/math/f92dd814b66d1788bf9f7821268e4cbb6a1b3196.png

_images/math/46aec6aaff80d183cc0ed35d77ce75c7c9ffd174.png

_images/math/9f5b42538b05abfe34e7abaca7c3390b02fb9c0a.png
o<

_images/math/f566fddfd49e49b5798d5a20428ec31e092dc7b6.png

_images/math/9ffffa9079478601ec062a7311ba177b98cfa31a.png
S12

__ 4a+b
A+-BrC+D

_images/math/3986f9b8ba3bd56d09ce9ff731826e829e72d8ea.png

_images/math/9b72213d544971a6c9880878434881e3def7424e.png
UL, Yo

_images/math/b9ba21151f0486a8aefcd00ceb7fc544a392fe87.png

_images/math/014b23a244458af15c4fbab7e0350d87c2ec987a.png

_images/math/9738de41e575946a38535d5fba8975232699316b.png

_images/math/77a55f3ed5654f5438a1712910870437640aa937.png
o<

_images/math/b75fdef957473d9637b2f806f02b8106910f9465.png

_images/math/912282e600d504e69dd09812b980fb7c5e84ece9.png
Ll
Dia= Y |ow — 7o
-

_images/math/9575dcbf16e2101097e848d1a364f17254b1b388.png

_images/math/c4fbc5db3ef5f8fc3eaec9c7cc4529bd938085a3.png

_images/math/a7d98a6d2db94444b1d29f263774f1acb5bd1ba3.png
(X'

X)) ' XY

_images/math/98a7b543c235773f5b964515d34dc7b613683adf.png
I'py

_images/math/36a41cb95d794072310cc31d86fa6640f90b6241.png

_images/math/ca91977bed6ab8abdd8a746b43d45990814104c3.png

_images/math/0ee6286648e37df7b74c51a73871491a98fd9a88.png
Wk

_images/math/54566da10efcd6a01a70067e4c6b8a624f743180.png
2) min(zk, Tok)

S+ 72

_images/math/d41448ed63619f06051d0273a42c9df032d78091.png
s, A+ 2D
2= S T BrC+2D

_images/math/b31b1ea8e4fe3f618dedfb0e2d8c69a3df7a391d.png
L

_images/math/f9f1f1fa470ccdc424fdf7f7e98ac942636b494a.png

_images/math/51d64635ec4fc78ef2645591bb883ca33cfab018.png

_images/math/89a69bbf1fdd90c4bcb6a4341c3641a8f3df7a16.png

_images/math/8bd0685e3bf9101859d24cf0e851651f182364c9.png

_images/math/203234e4433f7e9023ece07fc2d0f74ab6c308ba.png
TP

_images/math/e046d38d830400aa61ffdeda17113c67bb3dccb4.png
Yk

_images/math/bedcafe1a02c8a0f465ce0e17bd34106dfe1bbba.png

_images/math/c0ccca8faa0c2753a77884ab613af240333e2b68.png

_images/math/342202725a248c22f4a3f87ce6d5bba2fddbffc6.png

_images/math/9e3414f9cec7c350562f632744756c19a6dbb357.png

_images/math/16feb6de86f48cd3ca4871e9446153e34e3eb762.png
X! o DyZ g LY

_images/math/79a766830964c431ae629cab167db3a63afe16db.png
T SA+rB-C

_images/math/4fac70d8a6eeec93117fdcb7757ec5540c475031.png
s, A+ D
2= T o -oc+D

_images/math/ecb7fb785be784245988c4a1d4e034620403e52b.png
1UZ = YUC = BU

_images/math/5df8d5a13b4450539445d7b485091c7168a9c2c7.png

_images/math/9db61b2d057b91c405842d5325bb59881835b824.png
D =RDrowlLDcaQ

_images/math/e78a42b893458d2cf43ff225e9152c182224d59d.png

_images/math/6fe45090975712129780f60da30bcd318ed52400.png

_images/math/1fc38d033c42edae8ff134aea0daa85587512983.png
\'4

Dy U

_images/math/6a5a8a5347d2bc6de80e9601be1fd64bc0a2eb29.png

_images/math/aab009a1f0c6acdc05e1ea0c4b6a1d370e4a3526.png
Y = D%X__...B

